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Biotechnology derived therapeutics may induce an unwanted immune response leading to the forma-
tion of anti-drug antibodies (ADA). As a result the efficacy and safety of the therapeutic protein could be
impaired. Neutralizing antibodies may, for example, affect pharmacokinetics of the therapeutic protein
or induce autoimmunity. Therefore a drug induced immune response is a major concern and needs to
be assessed during drug development. It is therefore crucial to have assays available for the detection
and characterization of ADAs. These assays are used to classify samples in positive and negative sam-
nti-drug antibody
ut point
LISA
mmunoassay
mmunogenicity

ples based on a cut point. In this manuscript we investigate the performance of established and newly
developed methods to determine a cut point in immunoassays such as ELISA through simulation and
analysis of real data. The different methods are found to have different advantages and disadvantages. A
robust parametric approach generally resulted in very good results and can be recommended for many
situations. The newly introduced method based on mixture models yields similar results to the robust
parametric approach but offers some additional flexibility at the expense of higher complexity.
. Introduction

Biotechnology derived therapeutics may induce an unwanted
mmune response resulting in the formation of anti-drug antibod-
es (ADA). As a consequence of the development of ADA efficacy and
afety of the therapeutic protein could be impaired. For example,
inding or neutralizing antibodies may affect pharmacokinetics or
unctionality of the therapeutic protein or even induce autoimmu-
ity when the ADA cross-react with endogenous counterparts. In
ddition, unwanted immune responses may lead to allergic reac-
ions. As a result, drug induced immune responses to a therapeutic
rotein are a major concern and need to be assessed during drug
evelopment.

Consequently there is a need to develop appropriate assays for
he detection and characterization of ADA. In 2007, the European

edicines Agency (EMA) published a guideline that describes the
eneral strategy for the development and validation of assays for
mmunogenicity assessment of biotechnology derived therapeu-
ic proteins [1]. A multi-tiered approach for the testing of patient

amples is recommended. In the first instance a screening assay is
sed for rapid identification of positive samples while subsequently
n additional confirmatory assay is used to confirm the results of
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the screening assay. As a third step, a functional assay for assess-
ment of the neutralizing capacity of antibodies is recommended.
Screening, confirmatory and functional assays for detection and
characterization of ADA need to be validated [2,3].

A critical step during assay development and validation is the
definition of an appropriate cut-off that can be used to distinguish
between positive and negative samples in the screening assay. This
initial assay needs to be as sensitive as possible to maximize the
detection of true positive samples and should be designed to avoid
classifying positive samples as negative. A proportion of false posi-
tive samples is acceptable as they can be identified by the following
confirmatory assay while costs and time urge to take few samples to
this second stage. This approach ensures that the assays will detect
as many patients who have indeed developed antibodies.

A valid statistical approach needs to be elaborated to define a
reliable cut-off value used in screening and confirmatory assays
[4]. For defining an appropriate cut point usually control samples
obtained from healthy subjects or untreated patients are used. Such
a pool of control samples is in most cases of heterogeneous com-
position, containing sub-populations consisting of true negative
samples as well as true and false positive samples. The portion of
each sub population has impact on the final cut-off value if one
assumes that indeed all samples are truly negative. For example, a

high content of true positives in the sample population due to spe-
cific pre-existing antibodies used for calculating the cut-off would
result in a high number of false negative evaluation of samples.

dx.doi.org/10.1016/j.jpba.2011.04.006
http://www.sciencedirect.com/science/journal/07317085
http://www.elsevier.com/locate/jpba
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onsequently it is crucial to use statistical methods that deal with
otential (false) positive samples appropriately when determining
cut point. Different strategies to detect and characterize ADA’s

ave been discussed in [4,5] but no formal evaluation of the meth-
ds has yet been undertaken.

In this paper we evaluate a variety of established and less estab-
ished methods for cut point determination. We will introduce the

ethods in Section 2 before we compare them thoroughly via sim-
lation (Section 3). We conclude with an in-depth discussion and
ome future directions.

. Methods to determine cut point

In this section we will describe various methods for determining
ut points. Many of the methods are informed by the discussions
n [4], although some adjustments have been made to enable auto-

ated cut point determination in the simulations to follow. Most
mportantly no outlier removal is incorporated prior to applying
he various methods as different criteria will result in different cut
oints. Furthermore, the simulated data studied later do not con-
ain outliers and hence such outlier removal will not be necessary.
he conclusions made from the evaluation is nevertheless trans-
erable to situations were outliers are present and subsequently
emoved. Finally note that the methods discussed here establish a
xed cut point. We will briefly highlight how one of the methods
an be extended for floating cut points in the data application and
he discussion.

.1. Method 1: 95th percentile

The cut point is found as the 95th percentile of the screening
ata. This method does not assume a distribution of the measure-
ents and will result in a false positive rate of 5% if indeed all

amples are truely negative.

.2. Method 2: parametric method

The cut-off value is calculated as X̄ + z0.95 × SD, where X̄ and
D are the mean and standard deviation of the screening measure-
ents respectively and z0.95 is the 95% percentile of the standard

ormal distribution (approximately 1.645). This method assumes
hat the measurements are normally distributed. If all samples are
egative and the normality assumption is satisfied, it will result in
false positive rate of ∼5%.

.3. Method 3: robust parametric method

The cut point is found as X̃ + z0.95 × 1.483 × MAD, where X̃ and
AD are the median and median absolute deviation of the screen-

ng measurements respectively and z0.95 is the 95% percentile of
he standard normal distribution as before. This method resembles
he parametric method but uses robust estimators of center and
pread. It is designed to yield improved results if measurements
re not normally distributed and similar results to the parametric
ethod for normal data.

.4. Method 4: decision tree

A decision tree approach is used to arrive at the cut-off value.
he implementation considered here is taken from the left panel of
ig. 1 in [4] and specifically is calculated according to the following
teps.
. Perform a Shapiro–Wilks test [6] to assess normality of the
screening data. If the p-value is <0.05 the data are log-
transformated.
Fig. 1. Boxplot of screening values obtained in three runs of 157 healthy volunteers.

2. Calculate the 25% and 75% percentile, X0.25 and X0.75, of the
(transformed) data. Eliminate all data points outside the inter-
val [X0.25 − 1.5 × (X0.75 − X0.25); X0.75 + 1.5 × (X0.75 − X0.25)]. This
corresponds to eliminating data that are classed as outliers in a
box-whisker plot (e.g. [7]).

3. Perform the Shapiro–Wilks test [6] to assess normality using the
remaining data. If the p-value is <0.05, use the 95% percentile to
calculate the intermediate cut point, otherwise the parametric
method is used.

4. If data were log-transformed take the anti-logarithm of the inter-
mediate cut point as final cut point otherwise the intermediate
cut point is the final cut point.

The above algorithm aims to identify which method is most
appropriate by assessing the distribution of the screening values
prior to deciding which approach to take. It thereby tries to bring
together the advantages of different methods by combining them
which comes at the expense that the method used to find the cut
point is data dependent and therefore not known a priori.

In general, however, it is not recommended to test every data set
for normality, and use the result to decide between parametric and
nonparametric statistical tests (e.g. [8–10]). Decisions about when
to use parametric or nonparametric tests should be made to cover
an entire series of analyses. In addition, with large samples like
the ones in immunoassys, minor deviations from normality may
be flagged as statistically significant, even though small deviations
from a normal distribution will not affect the results.

2.5. Method 5: mixture model

This method, which has not been proposed previously, aims to
identify if samples are negative or positive and then only uses the
negative samples to find the cut point. It employs so-called (regres-
sion) mixture models which have been shown to be useful in many
scientific contexts (e.g. [11,12]). A full mathematical description of
these models can, for example, be found in [13]. The idea behind
such models is that different populations (in this application pos-
itive and negative subjects) are described by different probability

distributions.

The use of these models here is therefore to firstly identify if
there is more than one population in the screening data. If there
is more than one population, then only samples belonging to the
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Table 1
Cut points and proportion of samples above the cut-off for different methods.

95th percentile Parametric method Robust parametric method Decision tree Mixture model
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Cut point 0.5108 0.4630
Prop. values above 0.0518 0.0605

arger population, which is assumed to be corresponding to neg-
tive samples, will be used for cut point determination while all
creening data are used otherwise. Note that this is based on the
ssumption that the larger component corresponds to negative
amples, but alternative selection criteria such as the population
ith the smaller mean could be used instead. After the appropri-

te population has been identified, the cut point is found as the
5th percentile here, although any other method could be used at
his stage. A formal description and some comments on the specific
mplementation of this method are found in Appendix A.

.6. Method 6: mixture model with class predictor

This is a modification to the previous method that allows addi-
ional information to be used to find if samples are negative or
ositive. An additional variable that contains information about
he likelihood of a subject being positive (such as a biomarker) is
ncluded in the model. In the implementations discussed here the
lass predictor is derived from using hierarchical clustering on the
creening data (details in Appendix A).

.7. Method 7: experimental approach

The idea of the experimental approach is that one can detect
ositive values by using screening and confirmatory assay data
ogether. Specifically the cut point is found by:

. Calculating a preliminary cut point for the confirmatory assay
based on the 95% percentile method.

. Using the preliminary cut point to classify the screening values
into positive and negative samples.

. Creating a new dataset containing all screening samples below
the preliminary cut point and all screening samples larger than
the preliminary cut-off value provided that the confirmatory
value is larger than the screening value. The second set of sam-
ples is included as such observations correspond to an unspecific
signal.

. Calculating the final cut point according to the 95% percentile
method from the new dataset.

As for the mixture model alternative methods could be used
nstead of the 95th percentile used here.

. Comparison of methods

In this section we focus on comparing the different methods
o establish cut points introduced in Section 2. We will first illus-
rate the cut points obtained by the different methods and where
hey differ on a real data example and then evaluate the meth-
ds formally in an extensive simulation study. All analyses and
imulations were performed in R [14] Version 2.10.1. The mixture
pproaches used the gamlss.mx package [15] while the package
sm [16] was used for generating truncated normal distributed data

n the simulations.

.1. Real data examples
To illustrate the various methods and how the cut points dif-
er, we will use the data for one specific protein obtained on 157
ealthy volunteers. The data were generated in a direct-binding
0.2006 0.4395 0.4112
0.2224 0.0712 0.0821

enzyme-linked immunosorbent assay (ELISA). The microtiter plates
(Nunc/Thermo Scientific, Denmark) are coated with a specific pro-
tein as antigen and human plasma samples from healthy plasma
donors were incubated on the plate. The antigen–antibody com-
plex was detected with a horseradish peroxidase (HRP)-coupled
secondary antibody (goat anti-human IgG antibody; AbDSerotec,
Germany). The amount of bound secondary antibody was measured
by an HRP enzyme-dependent color-change reaction using OPD (o-
Phenylenediamine-Dihydrochloride, Sigma Aldrich, Germany) as
substrate. The microtiter plates were read with an ELISA reader
(Synergy HT; Bio-Tek, USA) in a dual mode at 492 nm measuring
wavelength and 630 nm reference wavelength. Delta-OD (=OD at
492 nm minus OD at 630 nm) corrected by the blank value is taken
into account as optical density for evaluation.

The data which have been obtained using three runs and two
experimenters are illustrated in Fig. 1 and given in full in Table B.4
in Appendix B. From the graph it can easily be seen that a normality
assumption is violated due to numerous values outside the box
for all runs. Although in practice one would likely try to remove
outliers for some methods and transform the data prior to using
the parametric method for cut point determination, we will not do
so here to highlight the consequence of violating these assumptions
on the found cut point.

Table 1 shows the cut-off values found and the proportion of
samples above this values for the different methods. Note that the
experimental approach is omitted here as no competition values
are available. It can be seen that all methods except the robust para-
metric method yield fairly similar cut points with around 5–8% of
the samples exceeding it. The percentile method yields the highest
cut point while the robust parametric method obtains the lowest
value. The mixture model approach in this instance finds a sin-
gle log-normal distribution to fit the data best. As there is only
one component identified, adding a predictor for class member-
ship will not change the cut-off value either. The most different
cut-off value is found by the robust parametric method. Its cut-off
value is so much smaller than the other values due to the attempt
to correct for the unwarranted assumptions of normality in this
case. Implicitly the method weights outliers less which in turn leads
to a markedly lower estimate of spread in this instance. Despite
this behavior being exaggerated in this example due to omission of
transformation and outlier removal, the same behavior is expected
regardless.

One feature of the data that has been ignored by the meth-
ods discussed above are the different experimenters. The mixture
model approach, however, can be adapted to allow for an exper-
imenter specific cut point. In order to obtain such a dynamic cut
point, one simply includes the experimenter as a factor in the mod-
els fit. The cut point for one experimenter is then simply obtained
as before, while the cut point for the second is adjusted by the effect
of the experimenter.

In this particular example a single component model fits the
data best and the intercept of the model is found as −2.10132 while
the coefficient associated with the experimenter is −0.03311. Con-
sequently the cut point for experimenter A is found as the 95th
percentile of a log-normal distribution with mean −2.1013 while

the cut point for experimenter B stems from a log-normal distri-
bution with mean −2.1344. The variance is the same for both at
0.7503. This results in a cut point of 0.4201 for experimenter A while
a cut point of 0.4065 is found for experimenter B. Note that these
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Table 2
Details on generated data.

Positive vs. negative
samples

Distribution True positive
rate

False positive
rate

1 No positive samples Log-normal 0.00 0.00
2 Small difference Log-normal 0.10 0.10
3 Moderate difference Normal 0.05 0.05
4 Large difference Log-normal 0.10 0.05
T. Jaki et al. / Journal of Pharmaceutical a

ut-off values are in line with the means for each experimenter
hich at 0.173 is higher for experimenter A than for experimenter
(0.162).

.2. Simulations

We now turn to evaluating the various methods to establish
ut points through simulation which has the advantage that it is
xactly known whether a specific value is positive or negative. For
more in-depth evaluation we will consider samples to be either

ruly positive, false positive or truly negative. For simulation true
ositive samples have high optical densities in screening assays,
ut low optical densities in confirmatory assays, false positives
ave high optical densities in screening and confirmatory assays
hile true negative samples have low measurements on both

ssays.
A number of different situations have been studied, but we

ill focus on the presentation of four illustrative scenarios (addi-
ional evaluations are available from the authors upon request). The
cenarios differ in the distribution used to generate the optical den-
ities, true positive rates and false positive rates. The true positive
ate is the proportion of subjects that have anti-drug antibodies
n the population while the false positive rate is the proportion of
ubject who do not have ADAs despite a high measurement in the

creening assay. A basic description for each scenario is given in
able 2, the observable distributions, that is the joint distribution
f the samples irrespective of their type, are shown given in Fig. 2
hile exact parameters for each scenario are given in Appendix C.
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Fig. 2. Observable distributions for simulation scenarios. Solid line correspo
Note: Normal observations are generated using a truncated normal distribution to
ensure positive measurements.

Samples of size 40, 80 and 160 were generated during each of
10,000 simulation runs for each scenario. As sample size had only
a limited influence on the performance of each method we will
focus attention to the results based on 160 samples unless stated
otherwise. To give an impression how varied the cut points found
are for the different methods, Fig. 3 shows the distribution of the
cut points found for scenario 4.

From the graph it is apparent that the decision tree as well as
both mixture model approaches have, sometimes markedly, higher
cut points than the other methods. It is also clearly visible that those
methods have (substantially) larger variabilities in the found cut
points. Furthermore, the variability in the cut points does decrease
for all methods as the sample size increases as one would expect. As
differences in cut points do not necessarily transfer in better clas-

sification, we will now focus on the ability of the different methods
to classify samples correctly. To compare the performance of the
different methods we will use the false positive rate, false negative

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

(2)

optical density

pr
ob

ab
ili

ty
 d

en
si

ty

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

(4)

optical density

pr
ob

ab
ili

ty
 d

en
si

ty

nds to screening assays while dashed line is for confirmatory assays.



1152 T. Jaki et al. / Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 1148–1156

s. (a)

r
t
a
a

f

f

p

p

p

a
p
n
a

T
D

Fig. 3. Distribution of cut points in scenario 4 over 10,000 simulation

ate as well as the proportion of correctly classified true positive,
rue negative and false positive samples. Each measurement will be
veraged over the 10,000 simulation runs. Formally the measures
re defined as

alse positive rate

= # false positive and true negative samples ≥ cut point
sample size

alse negative rate = # true positive samples ≤ cut point
sample size

rop. correct true positive = # true positive samples ≥ cut point
# true positive samples

rop. correct true negative = # true negative samples ≤ cut point
# true negative samples

rop. correct false positive = # false positive samples ≤ cut point
# false positive samples

Ideally a method to determine a cut point would therefore have

false positive and false negative rate close to zero while the pro-
ortion of correctly classified samples is close to one. It is worth to
ote that these measures are solely based on the cut point found
nd do not take into account of any preliminary classification used

able 3
etailed results of classificationfor scenario 4.

n Method False positive rate False negative rate

40

95th percentile 0.0171 0.0637
Parametric method 0.0429 0.0120
Robust parametric method 0.0843 0.0000
Decision tree 0.0418 0.0362
Mixture model 0.0766 0.0317
Mixture model with class predictor 0.0668 0.0033
Experimental approach 0.0963 0.0066

80

95th percentile 0.0155 0.0660
Parametric method 0.0449 0.0080
Robust parametric method 0.0850 0.0000
Decision tree 0.0341 0.0462
Mixture model 0.0797 0.0288
Mixture model with class predictor 0.0610 0.0069
Experimental approach 0.0858 0.0057

160

95th percentile 0.0172 0.0610
Parametric method 0.0464 0.0036
Robust parametric method 0.0796 0.0000
Decision tree 0.0377 0.0368
Mixture model 0.0738 0.0192
Mixture model with class predictor 0.0605 0.0013
Experimental approach 0.0762 0.0038
corresponds to 40 samples, (b) to 80 samples and (c) to 160 samples.

when finding the cut-off value. We will begin with an in-depth
evaluation of scenario 4 to illustrate which factors appear to be
driving the performance of each method for different sample sizes
in Table 3.

In the presence of a substantial separation between positive and
negative samples and log-normally distributed measurements it is
evident that the robust parametric method is superior to the other
methods as it classifies all positive samples and almost all negative
samples correctly. The only downside of the method is that it also
classifies all false positive samples as positive. More generally the
overlap between the distributions of positive and negative samples
implies that methods determining cut points can only increase the
performance in one category at the price of decreasing the ability
to correctly identify the other category, a feature clearly seen in the
table.

An interesting feature of the mixture approaches is that,
although the cut points are highly variable (Fig. 3), the classifica-
tion results are a close second to the robust parametric method for
medium to large sample sizes. This suggests that the variability in
the cut points is derived from features in the data which are not
picked up by the other methods. One would therefore expect that
the mixture approach could be improved even further for specific

datasets by allowing mixing of other distributions than ones used
in the simulations. Finally it is also evident that the inclusion of
a class predictor, which in this context has somewhat arbitrarily

Correct false positive Correct true negative Correct false positive

0.3947 0.9996 0.6129
0.9206 0.9999 0.0828
1.0000 0.9587 0.0000
0.7230 0.9880 0.2922
0.7628 0.9510 0.2438
0.9726 0.9765 0.0326
0.9309 0.9405 0.0587
0.3666 1.0000 0.6844
0.9422 0.9994 0.0800
1.0000 0.9586 0.0000
0.6023 0.9902 0.4183
0.7851 0.9467 0.2448
0.9444 0.9828 0.0439
0.9408 0.9549 0.0429
0.3654 1.0000 0.6247
0.9685 0.9999 0.0334
1.0000 0.9638 0.0000
0.6396 0.9901 0.3584
0.8199 0.9586 0.1800
0.9881 0.9851 0.0114
0.9608 0.9669 0.0295
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Parametric method
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parametric method
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Mixture model
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Fig. 4. Comparison of classification rates for seven diffe

een derived from hierarchical clustering, does improve classifica-
ion. Using more informative variables as class predictors will likely
esult in an even larger improvement over the mixture model with-
ut class predictor. Unfortunately these improvements do involve
ailoring the method(s) for specific applications which makes it not
nly impossible to evaluate in simulation but also makes the proce-
ure much more time demanding than the algorithmic alternatives.

In Fig. 4 we now compare the different methods amongst them-

elves across the four scenarios for a sample size of 160. Each row in
he graphic corresponds to one scenario, each column to one cat-
gory and each segment corresponds to one method. The size of
he segment corresponds to the proportion of correctly classified
ethods for cut point determination for four scenarios.

samples while the surrounding circle gives the reference of 100%
correctly classified samples.

From this comparison it is easy to see that all methods for all
scenarios are performing well in identifying negative samples as
such with improved classification as separation between positive
and negative samples increases. The success in classification of
truly positive samples heavily depends on the separation between
positive and negative samples as one would expect with classifica-

tion rates starting around 10% for small separation. Once again the
dilemma that a high proportion of correctly identified true positive
samples comes at the price of poor identification of false positives
is apparent for all methods.
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Notable is also that the robust parametric method is clearly
uperior to the other methods that are based only on screening data
hen positive samples are present but that the percentile method

nd the mixture approach are superior when only negative samples
re studied. In contrast the decision tree and the parametric method
nderperform when no positive samples are present and are sub-
tantially worse than the best methods in the presence of positive
amples. Finally no influence of the distribution (normal or log-
ormal) on the preformance of the different methods is detectable.

The experimental approach, which in contrast to all other meth-
ds uses both screening and confirmatory data, results in superior
lassification of positive samples for small and moderate separation
etween positive and negative samples at the price of less success-
ul classification of negative sample which results in a false positive
ate of around 8–10%.

Once separation between positive and negative samples is large,
owever, the robust parametric method and the mixture model
pproach yield better classification of positive and negative sam-
les.

Overall it therefore appears that the robust parametric method
s preferable for samples that include positive samples while the
ercentile method should be considered when no positive samples
re expected. The mixture model approaches perform well in both
nstances provided enough samples are available and can therefore
e recommended if one is uncertain about positive samples being
resent and particularly if specific tailoring to the application is
easible.

. Discussion

In this paper seven methods for cut point estimation were for-
ally compared in terms of their ability to identify positive and

egative samples. Due to the overlap between the distributions of
ositive and negative samples, it is inherent to methods determin-

ng cut points that the performance to identify a certain category
an be increased only at the cost of decreasing the ability to cor-
ectly identify the other category, a relationship clearly seen in
he simulation results. As these assays are mainly used in drug
afety assessments, false positive samples can be regarded as the
company’s risk” (a false signal of increased anti-drug antibody
evel will be obtained), while false negative samples are the “con-
umers’ risk”, the truly increased anti-drug antibody level will not
e detected potentially resulting in unsafe or uneffective treatment
f the patient. Therefore, a conservative approach is to choose a
ethod which ensures a very low level of false negatives. In these

erms the robust parametric method is best while the mixture
odel with class predictor is a close second.
Discussion is focused around the situation in which a large

ifference between the assay measurements of the positive and
egative samples was assumed as differences between methods
ere expected to be more pronounced in this case although the

elative merits of the various methods is largely unchanged by this
ifference. For all sample sizes, the positive samples were best iden-
ified by the robust parametric method with the mixture model as
close second. The highest false negative rates were found with

he 95% percentile method, followed by the experimental approach,
nd the decision tree. 100% of the true positive cases were identified
ith the robust parametric method followed by the mixed model
ith class predictor which also correctly identified around 95% of

he true positive cases. All methods resulted in a high proportion
f correctly identified true negatives.

In this paper we have also discussed two novel approaches

ocusing for cut point determination namely mixture models and
n experimental approach. The underlying idea of both is to identify
ositive samples and excluding them from the data used to deter-
ine the cut-off value. Overall the mixture model approach often
omedical Analysis 55 (2011) 1148–1156

yields classification results that are close to best method while the
experimental approach gives excellent results for small to medium
separation at the price of slightly higher false positive rates. Within
these methods the 95th percentile was used on the “clean” dataset
although in the light of the results obtained it is advisable to explore
the use of the robust parametric method instead. The mixture mod-
elling framework also offers additional flexibility not considered
here. Our focus has been on fixed cut points and consequently
other factors such as experimenter, day, . . . have not been included
when finding cut points. The mixture models presented here can
be extended to include such additional variables. These, then called
regression mixture models can then be used to find dynamic cut
points that are specific to these additional variables.

Moving to the overall aim of the multi-tiered approach for test-
ing a patients sample to identify positive samples, best results are
likely obtained by using different methods for each of the stages.
Specifically, a method that yields a high number of positive samples
at the screening stage while a method identifying a high num-
ber of true positives in the confirmatory stage appears promising.
Detailed evaluations are planned for the future to examine different
combinations of approaches thoroughly.
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Appendix A. Details of cut point determination using
mixture models

1. Fit a 1-component mixture model assuming a log-normal distri-
bution to the screening data.

2. Fit a 2-component mixture model assuming a log-normal distri-
bution for one component and a generalized gamma distribution
for the other to the screening data.

3. Find the model with the lower Bayesian Information Criteria
(BIC, [17]).
(a) If the 1-component model has been selected, find the 95th

percentile of the estimated log-normal distribution.
(b) If the 2-component model has been selected, find the 95th

percentile of distribution corresponding to the larger com-
ponent.

Notes on the method:

• The generalized gamma distribution is defined as

f (y|�, �, �) = ��z��e−�z

� (�)y

where z = (y/�)�, � = 1/(�2 × |�|2) for y > 0, �, � > 0 and −∞ > � > ∞;
• Distributional choices have been made based on real data but can

be modified for different contexts;
• Other model selection criteria such as AIC could also be used;
• This method assumes that there are more negative than positive

subjects in the sample although simple adjustments can be made
to relax this assumption;

• When desired, class predictors are included in both models. In
the simulations the class predictor has been found by using hier-

archical clustering [18] on the screening data and use the class
membership derived from the clustering algorithm as class pre-
dictor in the model. Complete linkage and the euclidian distance
is used in the hierarchical clustering algorithm.
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.
able B.4
ptical densities 157 healthy volunteers for a specific protein using three runs and two e

Experimenter A B B
Run 1 2 3

1 0.847 1.009 0.654
2 0.108 0.108 0.099
3 0.185 0.187 0.130
4 0.065 0.081 0.075
5 0.107 0.11 0.103
6 0.229 0.273 0.216
7 0.221 0.153 0.169
8 0.081 0.057 0.048
9 0.073 0.091 90.0730

10 0.095 0.106 0.077
11 0.151 0.178 0.137
12 0.325 0.286 0.226
13 0.143 0.151 0.127
14 0.118 0.140 0.143
IB 0.108 0.082 0.071
16 0.093 0.116 0.116
17 0.081 0.091 0.081
18 0.110 0.127 0.096
19 0.361 0.3610 0.248
20 0.050 0.062 0.044
21 0.046 0.053 0.044
22 0.308 0.290 0.227
23 0.070 0.081 0.060
24 0.029 0.105 0.102
25 0.160 0.167 0.111
26 0.300 0.328 0.269
27 0.090 0.085 0.063
28 0.439 0.425 0.296
29 0.050 0.073 0.063
30 0.037 NA NA
31 0.077 0.096 0.087
32 0.039 0.085 0.075
33 0.053 0.061 0.061
34 0.048 0.070 0.1060
35 0.089 0.112 0.084
36 0.076 0.079 NA
37 0.176 0.132 0.1320
38 0.182 0.211 0.178
39 0.097 0.096 0.089
40 0.222 0.198 0.191
41 0.039 0.043 0.039
42 0.158 0.197 0.133
43 0.347 0.312 0.259
44 0.112 0.130 0.13
45 0.027 0.056 NA
46 0.048 0.051 0.038
47 0.160 0.134 0.080
48 0.092 0.124 0.118
49 0.067 0.080 0.066
50 0.067 0.084 0.069
51 0.186 0.244 0.166
52 0.041 0.050 NA
53 0.145 0.159 0.156
54 0.085 0.126 0.0560
55 0.172 0.198 0.196
56 0.758 0.828 0.598
57 0.054 0.047 0.011
58 0.119 0.140 0.123
59 0.063 0.073 0.061
60 0.103 0.112 0.104
61 0.107 0.134 0.103
62 0.063 0.088 0.068
63 0.113 0.073 0.081
64 0.086 0.117 0.109
65 0.424 0.109 0.089
66 0.014 NA NA
67 0.333 0.294 0.179
68 0.069 0.071 0.058
69 0.091 0.085 0.078
70 0.093 0.101 0.0
71 0.064 0.066 0.062
72 0.374 0.475 0.383
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xperimenters.

A B B
1 2 3

81 0.045 0.037 0.054
82 0.075 0.061 0.066
83 0.1870 0.082 0.080
84 0.321 0.236 0.304
85 0.198 0.176 0.172
86 0.055 0.059 0.040
87 0.135 0.128 0.100
88 0.073 0.071 0.076
89 0.093 0.073 0.084
90 0.0950 0.074 0.078
91 0.145 0.083 0.119
92 0.053 0.039 0.048
93 0.091 0.064 0.073
94 0.158 0.112 0.141
95 0.065 0.053 0.045
96 0.483 0.500 0.440
97 0.091 0.084 0.077
98 0.581 0.518 0.584
99 0.089 0.068 0.068
100 0.079 0.064 0.064
101 0.081 0.057 0.073
102 0.441 0.286 0.291
103 0.111 0.081 0.078
104 0.019 0.050 0.064
105 0.058 0.059 0.054
106 0.283 0.260 0.242
107 1.079 1.277 1.117
108 0.115 0.090 0.096
109 0.129 0.088 0.111
110 0.397 0.234 0.339
110.1 0.154 0.139 0.121
112 0.131 0.096 0.114
113 0.053 0.047 0.059
114 0.088 0.106 0.101
115 0.180 0.178 0.154
116 0.150 0.126 0.121
117 0.158 0.142 0.126
118 0.0890 0.089 0.095
119 0.058 0.063 0.066
120 0.069 0.056 0.071
121 0.084 0.065 0.074
122 0.19 0.091 0.097
123 0.685 0.553 0.589
124 0.534 0.463 0.512
125 0.07 0.075 0.070
126 0.113 0.114 NA
127 0.051 0.055 0.046
128 0.265 0.293 0.258
129 0.917 0.987 0.908
130 0.168 0.141 0.127
131 0.288 0.210 0.212
132 0.264 0.158 0.228
133 0.120 0.117 0.111
134 0.061 0.056 0.065
135 0.397 0.387 0.308
136 0.414 0.449 0.360
137 0.240 0.298 0.287
138 0.095 0.080 0.094
139 0.322 0.283 0.306
140 0.0720 0.072 0.070
141 0.097 0.078 0.086
142 0.235 0.156 0.187
143 0.084 0.071 0.087
144 0.0 0.094 0.090
145 0.532 0.600 0.530
146 0.220 0.207 0.162
147 0.190 0.231 0.153
148 0.107 0.1 0.101
149 0.059 0.049 0.054
150 0.158 0.098 0.112
151 0.105 0.085 0.105
152 0.138 0.083 0.088
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Table B.4 (Continued)

Experimenter A B B A B B
Run 1 2 3 1 2 3

73 0.036 0.041 0.037 153 0.072 0.066 0.071
74 0.055 0.056 0.057 154 0.322 0.277 0.215
75 0.060 0.064 0.063 155 0.060 0.054 0.055
76 0.162 0.166 0.139 156 0.077 0.070 0.059
77 0.392 0.422 0.327 157 0.120 0.126 0.119
78 0.125 0.134 0.172 Mean 0.173 0.169 0.155
79 0.084 0.067 0.074
80 0.695 0.463 0.497

Mean experimenter A: 0.173.
Mean experimenter B: 0.162.

Table C.5
Parameters used to generate data for simulations.

Scenario Distribution Mean negative Mean positive Std deviation ne

1 Log-normal −1.75 NA 0.5

A

R

[

[

[

[

[

[

[

2 Log-normal −1.75 50.0 0.5
3 Normal 0.30 0.75 0.2
4 Log-normal −1.75 0.5 0.5

ppendix C. Supplementary information

See Table C.5.
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